Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет»

И. М. Ковенский, В. Н. Кусков

ИСПЫТАНИЯ СВАРНЫХ СОЕДИНЕНИЙ ДЕТАЛЕЙ И КОНСТРУКЦИЙ НЕФТЕГАЗОВОГО ОБОРУДОВАНИЯ

Допущено Учебно-методическим объединением вузов Российской Федерации по нефтегазовому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки бакалавров 131000 «Нефтегазовое дело», по представлению Ученого совета ГОУ ВПО «Тюменский государственный нефтегазовый университет»

> Тюмень ТюмГНГУ 2011

УДК 624.014 ББК 34.2+34.441 К 56

Рецензенты:

доктор технических наук, профессор В. С. Кушнер кандидат технических наук, доцент А. Г. Мельников

Ковенский, И. М.

К 56 Испытания сварных соединений деталей и конструкций нефтегазового оборудования : учебное пособие / И. М. Ковенский, В. Н. Кусков. - Тюмень : ТюмГНГУ, 2011. — 120 с. ISBN 978-5-9961-0380-5

В учебном пособии рассмотрены методы испытания, определения свойств и анализа структуры сварных соединений. Показаны особенности применения типового и специализированного оборудования. Приведены характеристики приборов, требования к образцам, примеры испытаний, а также наиболее востребованные справочные данные.

Предназначено в качестве учебного пособия по материаловедению и технологии конструкционных материалов для студентов, обучающихся по направлению «Нефтегазовое дело», может быть полезно студентам машиностроительных специальностей.

УДК 624.014 ББК 34.2+34.441

ISBN 978-5-9961-0380-5

© Государственное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет», 2011

ОГЛАВЛЕНИЕ

	ВВЕДЕНИЕ
1.	ДЕФЕКТЫ СВАРНЫХ СОЕДИНЕНИЙ
1.1.	Классификация дефектов
1.2.	Оценка влияние дефектов на работоспособность сварных
	соединений
2.	МЕХАНИЧЕСКИЕ ИСПЫТАНИЯ
4.	СВАРНЫХ СОЕДИНЕНИЙ
2.1.	Особенности механических испытаний сварных соединений
2.2.	Испытания на статическое растяжение
2.3.	Испытания на ударный изгиб (на надрезанных образцах)
2.4.	Измерение твердости
2.5.	Испытания на статический изгиб
3.	СТРУКТУРНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ
3.1.	Микроскопические методы
3.1.1.	Световая микроскопия
3.1.2.	Просвечивающая электронная микроскопия
3.1.3.	Растровая электронная микроскопия и рентгеноспектральный
	анализ
3.1.4.	Автоионная микроскопия
3.2.	Рентгеноструктурный анализ
3.3.	Методы электронной спектроскопии
3.4.	Резонансные методы исследования
3.4.1.	Ядерный гамма-резонанс (эффект Мессбауэра)
3.4.2.	Аннигиляция позитронов
4.	НЕРАЗРУШАЮЩИЕ МЕТОДЫ КОНТРОЛЯ
4.1.	Визуально-измерительный контроль
4.2.	Радиографический контроль
4.2.1.	Применяемое оборудование
4.2.2.	Методика радиографического контроля
4.3.	Ультразвуковой контроль
4.3.1.	Методы ультразвукового контроля
4.3.2.	Основные параметры контроля
4.4.	Электромагнитные методы контроля
4.5.	Капиллярная дефектоскопия
5.	ИСПЫТАНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ
-	И ИХ ВНУТРИТРУБНАЯ ДИАГНОСТИКА
5.1.	Гидравлические испытания
5.2.	Пневматические испытания
5.3.	Внутритрубная диагностика трубопроводов
	СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Основное требование, предъявляемое к технологиям сварки, состоит в обеспечении заданного уровня качества сварного соединения при минимальной себестоимости и максимальной производительности. Согласно ГОСТ 15467-79, под качеством понимают совокупность свойств продукции, обусловливающих ее пригодность удовлетворять различные потребности в соответствии с назначением. Каждому изделию (детали или техническому устройству) присущи определенные показатели качества. К показателям качества сварных соединений относятся характеристики прочности и пластичности, вязкости, жаропрочности, коррозионной стойкости и др.

В настоящее время в сварочном производстве существует реальная возможность технологического управления показателями качества. Эта возможность может быть реализована как рациональным выбором типа электрода и режимов сварки, так и совершенствованием методик, используемых для изучения структуры и свойств.

Для получения сварных соединений с оптимальными эксплуатационными свойствами необходимо иметь четкие и по возможности полные представления о структуре, обеспечивающей такие свойства. Это особенно важно в связи с тем, что структура сварных соединений имеет, как правило, нетривиальный характер. Ее формирование происходит в термодинамически неравновесных условиях при температурах, значительно превышающих температуру классических видов термообработки, в малых объемах, ограниченных зоной расплавления, и в ряде случаев с дополнительным механическим воздействием. Поэтому адекватная оценка строения и структуры сварных соединений позволяет не только характеризовать их качество и свойства, но и наметить пути управления структурными и фазовыми превращениями, задавая научно-обоснованные параметры сварочного процесса.

В настоящем издании рассмотрены возможности классических и современных методов исследования, анализа и контроля применительно к испытаниям сварных соединений.