МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЛАБОРАТОРНЫЕ РАБОТЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ТЕМЕ «ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ»

Учебно-методическое пособие

Издательско-полиграфический центр Воронежского государственного университета 2012

• • • • •

. .

Содержание

Лабораторные работы	4
Лабораторная работа № 1	
Предел и непрерывность функции многих переменных	4
Лабораторная работа N 2	
Дифференцирование функции многих переменных	8
Лабораторная работа № 3	
Неявные функции и их приложения	11
Лабораторная работа № 4	
Экстремум функции многих переменных	16
Методические указания	18
Лабораторная работа № 1	18
Лабораторная работа N^2 2	21
Лабораторная работа N_{2} 3	26
Лабораторная работа $N_{-}4$	36
Список литературы	42

Задание 4. Исследовать функцию на непрерывность по отдельным переменным и по совокупности переменных в точках O(0,0) и $A(x_0,y_0)$:

1.
$$u = \begin{cases} \frac{x^2 y^2}{x^4 + y^4}, & \text{если } x^4 + y^4 \neq 0 \\ 0, & \text{если } x^4 + y^4 = 0 \end{cases}$$
 $A(1,2)$

2.
$$u = \begin{cases} \frac{x^3y^2}{x^4 + y^4}, & \text{если } x^4 + y^4 \neq 0 \\ 0, & \text{если } x^4 + y^4 = 0 \end{cases}$$
 $A (10^{-4}, 10^{-5})$

3.
$$u = \begin{cases} \frac{x^2 + y^2}{x + y}, & \text{если } x + y \neq 0 \\ 0, & \text{если } x + y = 0 \end{cases}$$
 $A(1, -1)$

4.
$$u = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{если } x^2 + y^2 \neq 0 \\ 1, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A(0,1)$

5.
$$u = \begin{cases} \frac{\sin x + \sin y}{x + y}, & \text{если } x + y \neq 0 \\ 1, & \text{если } x + y = 0 \end{cases}$$
 $A\left(\frac{\pi}{3}, -\frac{\pi}{3}\right)$

6.
$$u = \begin{cases} \frac{\cos x - \cos y}{x - y}, & \text{если } x - y \neq 0 \\ 0, & \text{если } x - y = 0 \end{cases}$$
 $A\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$

7.
$$u = \begin{cases} \frac{x^2 + y^2}{y^2 - x^2}, & \text{если } x^2 - y^2 \neq 0 \\ 1, & \text{если } x^2 - y^2 = 0 \end{cases}$$
 $A(1,0)$

8.
$$u = \begin{cases} \frac{x+y}{x^3+y^3}, & \text{если } x+y \neq 0 \\ \frac{1}{3}, & \text{если } x+y = 0 \end{cases}$$
 $A(1,-1)$

9.
$$u = \begin{cases} \frac{x^3 + y^2}{x^2 + y^2}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A (1, -1)$

10.
$$u = \begin{cases} \frac{x^3 + y^2}{x^3 + y^3}, & \text{если } x^3 + y^3 \neq 0 \\ 0, & \text{если } x^3 + y^3 = 0 \end{cases}$$
 $A (1,1)$

11.
$$u = \begin{cases} \frac{x^3 + y^2}{x^2 + y}, & \text{если } x^2 + y \neq 0 \\ 0, & \text{если } x^2 + y = 0 \end{cases}$$
 $A (1, -1)$

12.
$$u = \begin{cases} \frac{x^2 + y}{\sqrt{x^2 + y^2}}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A (1, -1)$

13.
$$u = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A (1,0)$

14.
$$u = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & \text{если } x^2 + y^2 \neq 0 \\ 1, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A (1,0)$

15.
$$u = \begin{cases} \frac{x^2}{x^2 - 2y - 4}, & \text{если } x^2 - 2y \neq 4 \\ 2, & \text{если } x^2 - 2y = 4 \end{cases}$$
 $A (2,0)$

16.
$$u = \begin{cases} \sin \frac{xy}{\sqrt{x^2 + y^2}}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$
 $A (1, 1)$

Лабораторная работа № 2

Дифференцирование функции многих переменных

Задание 1. Исследовать, имеет ли функция u=u(x,y) частные производные в точке O(0,0) и дифференцируема ли она в этой точке:

1.
$$u = \sqrt{x^2 + y^2}$$

2.
$$u = \sqrt[3]{x^2y^2}$$

3.
$$u = \sqrt[4]{x^4 + y^4}$$

$$4. \quad u = \sqrt[3]{x} \sin y$$

5.
$$u = \sqrt[3]{y} \operatorname{tg} x$$

$$6. \quad u = 2y + x \cos \sqrt[3]{xy}$$

7.
$$u = \sqrt{x^4 + y^4}$$

8.
$$u = \sqrt[3]{xy}$$

9.
$$u = \sqrt[3]{x^4 + y^4}$$

10.
$$u = \sqrt[3]{x^3 + y^3}$$

11.
$$u = \arcsin(xy + \sqrt[3]{x^3 + y^3})$$

12.
$$u = y + \cos \sqrt[3]{x^2 + y^2}$$

13.
$$u = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$

14.
$$u = \begin{cases} \frac{x^4 + y^4}{x^2 + y^2}, & \text{если } x^2 + y^2 \neq 0 \\ 0, & \text{если } x^2 + y^2 = 0 \end{cases}$$

15.
$$u = \begin{cases} \frac{x^3 + y^3}{|x| + |y|}, & \text{если} |x| + |y| \neq 0 \\ 0, & \text{если} |x| + |y| = 0 \end{cases}$$

16.
$$u = \begin{cases} \frac{xy}{|x| + |y|}, & \text{если} |x| + |y| \neq 0 \\ 0, & \text{если} |x| + |y| = 0 \end{cases}$$