

Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Самарская государственная сельскохозяйственная академия»

В. В. Зайцев

Молекулярная эндокринология

Методические указания для практических занятий

Кинель РИЦ СГСХА 2014

Ä

УДК 619: 616.4: 577.2

ББК 48: 725

3-17

Зайцев, В. В.

3-17 Молекулярная эндокринология : методические указания для практических занятий / В. В. Зайцев. – Кинель : РИЦ СГСХА, 2014. – 33 с.

Методические указания предназначены для аспирантов, обучающихся по направлению подготовки 06.06.01 Биологические науки и направленности 03.03.01 Физиология (уровень подготовки кадров высшей квалификации).

© ФГБОУ ВПО Самарская ГСХА, 2014 © Зайцев В. В., 2014

Ä

• •

Ä

Предисловие

Цель преподавания дисциплины «Молекулярная эндокринология» — формирование у аспирантов углубленных профессиональных знаний о нервной, эндокринной и иммунной системах, а также об общности механизмов функционирования всех биорегуляторных систем на молекулярном уровне. Задачи дисциплины: углубленное изучение основных свойств биорегуляторов (информонов) и их рецепторов, механизмов действия различных суперсемейств и индивидуальных информонов на внутриклеточные процессы, их видовых и возрастных особенностей.

Дисциплина «Молекулярная эндокринология» входит в цикл обязательных дисциплин, дисциплины по выбору аспиранта основной образовательной программы послевузовского профессионального образования (аспирантура) по специальности 03.03.01 — Физиология. Знания и навыки, полученные аспирантами при изучении данного курса, необходимы для сдачи кандидатского экзамена по специишлине и могут быть использованы при подготовке и написании диссертации по специальности 03.03.01 — Физиология. Выпускник, освоивший программу аспирантуры по направлению подготовки 06.06.01 Биологические науки и направленности 03.03.01 Физиология, должен обладать следующими компетенциями:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях;
- способность самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования и информационно-коммуникационных технологий;
- осознание социальной значимости своей будущей профессии, обладание высокой мотивацией к выполнению профессиональной деятельности;
- ullet использование основных законов естественнонаучных дисциплин в профессиональной деятельности.

Занятие 1 (вводное). Порядок работы в лаборатории, охрана труда и техника безопасности

Цель занятия: ознакомление студентов с порядком работы в лаборатории, охрана труда и техники безопасности при проведении ЛПЗ, подготовка животных к опытам, инструменты и приборы, используемые в опытах.

Охрана труда и техника безопасности в учебном процессе

Лабораторные занятия должны выполняться в условиях, обеспечивающих высокую производительность учебного труда и исключающих возникновение травм, ожогов, ушибов и других повреждений студентов. На занятиях по физиологии часто используются электрические приборы, режущие инструменты, растворы кислот, щелочей и другие средства, а также лабораторных и сельскохозяйственных животных. Включение их в работу требует соблюдения определенных правил охраны труда и техники безопасности, предупреждающих воздействие на студентов опасных и вредных производственных факторов, что особенно необходимо в современных условиях научно-технического прогресса.

Основные правила предупреждения электротравм

При использовании прибора в работе необходимо до включения произвести его внешний осмотр и убедиться в соответствии потребления им электрического тока и напряжения его в сети. Все токоведущие части должны иметь неповрежденную изоляцию и плотные контакты, а конструкция прибора – соответствовать условиям его эксплуатации и обеспечивать защиту работающего от соприкосновения с токоведущими и двигательными частями. Корпус прибора или металлические его части, доступные для прикосновения человека, подвергают защитному заземлению, показания прибора ставят на нуль. В приборах должна быть действующая звуковая сигнализация, например красная лампочка при включении высокого напряжения. Приборы следует предохранять от попадания на них воды, паров, растворов кислот и щелочей. Перегоревшие предохранители не заменять самодельными.

Основные правила работы с реактивами

На занятиях часто используют реактивы в растворах, а в отдельных случаях в виде кристаллов. Точность полученных результатов при выполнении лабораторных опытов во многом зависит от чистоты реактивов. Поэтому их нужно предохранять от загрязнения и держать в закрытой посуде. Случайно рассыпанный реактив вновь вносить в эту же тару нельзя. Реактивы без этикетки и неизвестного состава в работе не используют. Растворы реактивов хранят в плотно закрытой посуде, а легко испаряющиеся в склянках с двойными шлифованными затворами. Жидкости с резким запахом содержат и переливают только в вытяжном шкафу. Нельзя определять реактивы по запаху из горлышка посуды, а также на вкус. Во время работы на стол выставляют реактивы, необходимые только для данного занятия. Переливать растворы из одной емкости в другую можно с помощью мерных цилиндров, бюреток и пипеток, не допуская их разбрызгивания. Ядовитые жидкости и концентрированные растворы набирают только с помощью резиновой груши или пипетки с баллоном. Твердые вещества, бумагу, вату не выбрасывают, а остатки кислот, щелочей и другие жидкие реактивы не выливают в раковину, а собирают их в специально отведенную посуду.

В лабораторной практике нередко пользуются такими ядовитыми веществами, как ртуть, метиловый спирт и бром. Ртуть может вызвать смертельное отравление при содержании ее в воздухе 0,00005об%. Поэтому необходимо очень осторожно работать с приборами, содержащими ртуть, и не допускать ее утечки при заправке аппаратов. Метиловый спирт – очень ядовитая и легковоспламеняющаяся жидкость, с воздухом образует взрывоопасную смесь. Он сравнительно легко проникает в организм через неповрежденную кожу, а при попадании внутрь до 5-8 г вызывает сильное отравление и потерю зрения. Метиловый спирт по запаху, цвету и вкусу мало отличается от этилового спирта, и поэтому хранить их следует раздельно. Бром имеет свойство испаряться и поэтому сильно раздражает органы дыхания, а при контакте с кожей вызывает ожоги. Он является пожароопасным препаратом, хранят его в специальных банках с притертой пробкой и сверху