УДК 518.12(075.8) ББК 22.193 Ч-67

> Издание доступно в электронном виде по адресу https://bmstu.press/catalog/item/6643

Факультет «Специальное машиностроение» Кафедра «Автономные информационные и управляющие системы»

Рекомендовано Научно-методическим советом МГТУ им. Н.Э. Баумана в качестве учебного пособия

Авторы:

Г.Л. Павлов, В.Б. Сучков, И.В. Муратов, Ю.В. Каракулин

Ч-67 **Численные методы в теории управления**: Модули 1 и 2: учебное пособие / [Г. Л. Павлов и др.] — Москва: Издательство МГТУ им. Н. Э. Баумана, 2020. — 55, [5] с.: ил.

ISBN 978-5-7038-5349-8

Рассмотрены основные способы интерполирования: Лагранжа, Эйткена, Ньютона, Гаусса и Стирлинга, метод сплайна, а также применение метода наименьших квадратов. Показано практическое применение указанных методов на многочисленных примерах, представлены фрагменты программ в пакетах MAPLE и MATLAB, реализующие описанные алгоритмы.

Для студентов, обучающихся по направлению «Управление в технических системах».

УДК 518.12(075.8) ББК 22.193

© МГТУ им. Н.Э. Баумана, 2020

© Оформление. Издательство МГТУ им. Н.Э. Баумана, 2020

ISBN 978-5-7038-5349-8

Оглавление

ПредисловиеВведение	
МОДУЛЬ 1. Численные методы интерполяции	7
1.1. Интерполирование функций	8
1.2. Интерполяционная формула Лагранжа	8
1.3. Интерполирование по схеме Эйткена	14
1.4. Формула Ньютона. Интерполирование вперед и назад	16
1.5. Интерполяционные формулы Гаусса и Стирлинга	18
1.6. Интерполяция функции с помощью метода сплайна	
Контрольные вопросы и задачи	23
МОДУЛЬ 2. Среднеквадратические приближения функций	24
2.1. Метод наименьших квадратов в случае дискретного	
ряда точек	25
2.2. Общая задача приближения по методу наименьших квадратов	35
2.3. Решение линейных алгебраических уравнений	
	37
2.4. Метод наименьших квадратов для непрерывных	
функций	38
2.5. Свойства оценки при применении метода	
наименьших квадратов	40
2.6. Регрессионный анализ	
2.7. Примеры приближения функций с помощью	
тригонометрических многочленов	43
Контрольные вопросы и задачи	
Литература	57