УДК 517.983:[512.644:519.612] (035.3) ББК 22.143+22.162.3 я44 Ш 88

> Печатается по решению Комитета при Ученом совете Южного федерального университета по естественнонаучному и математическому направлению науки и образования (протокол № 10 от 9 июня 2021 г.)

Рецензенты:

профессор кафедры информатики и вычислительного эксперимента ИММ и КН им. И. И. Воровича Южного федерального университета, доктор физико-математических наук Г. В. Муратова;

заведующий лабораторией функционально-градиентных и композитных материалов научно-образовательного центра «Материалы» ДГТУ доктор физико-математических наук С. М. Айзикович

Штейнберг, Б. Я.

Ш 88 Алгоритмы решения систем линейных уравнений с блочно-ленточными матрицами : монография / Б. Я. Штейнберг, О. Б. Штейнберг ; Южный федеральный университет. — Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2022. — 138 с.

ISBN 978-5-9275-4061-7 DOI 10.18522/801287963

Монография содержит новые быстрые алгоритмы решения систем линейных уравнений с блочно-ленточными матрицами. В задачах математического моделирования часто возникает необходимость решения систем линейных алгебраических уравнений большой размерности с разреженными матрицами. Во многих таких случаях матрица системы уравнений оказывается блочно-ленточной или систему уравнений можно преобразовать к эквивалентной системе с такой матрицей. Такие матрицы допускают более компактное хранение в памяти, чем разреженные матрицы общего вида. В данной работе приводятся быстрые алгоритмы решения некоторых таких систем уравнений. Эти алгоритмы опираются на особенности задачи и на особенности современных вычислительных систем. В частности, многие методы решения целевых задач с блочно-ленточными матрицами сводятся к вычислению программных циклов с линейной рекуррентной зависимостью. В данной работе приводятся новые алгоритмы распараллеливания таких рекуррентных циклов, демонстрирующие хорошее ускорение. Эти алгоритмы оказываются эффективными на новых процессорных микросхемах, имеющих большое количество вычислительных ядер.

Работа поддержана грантом Правительства РФ № 075-15-2019-1928

ISBN 978-5-9275-4061-7

УДК 517.983:[512.644:519.612] (035.3) ББК 22.143+22.162.3 я44

- © Южный федеральный университет, 2022
- © Штейнберг Б. Я., Штейнберг О. Б., 2022
- © Оформление. Макет. Издательство Южного федерального университета, 2022

Ä

СОДЕРЖАНИЕ

Списо	ок сокращений5
Введе	ние6
1. Вли	іяние вычислительных архитектур и компиляторов
	быстродействие алгоритмов и их программных реализаций9
1.1.	Разнообразие и особенности вычислительных систем9
1.2.	Модели параллельных вычислений
1.3.	Анализ узких мест производительности программ19
1.4.	Отставание развития оптимизирующих компиляторов от развития процессоров
1.5.	Информационные зависимости в программе
	Гнезда циклов и пространство итераций
	Блочно-ленточные матрицы
	еобразования программ и предкомпилятор для ускорения
реп	ления СЛАУ с блочно-ленточными матрицами29
2.1.	Некоторые эквивалентные преобразования программ29
2.2.	Предкомпилятор для ускорения алгоритмов36
3. О п	араллельных прямых алгоритмах решения СЛАУ
с ле	енточными и блочно-ленточными матрицами37
3.1.	Параллельное решение СЛАУ с двухдиагональными и блочными
	двухдиагональными матрицами
3.2.	О последовательном алгоритме, соответствующем параллельному алгоритму решения СЛАУ с двухдиагональной матрицей40
3.3.	Применения алгоритма параллельного решения системы
	уравнения с ленточной двухдиагональной матрицей43
	СЛАУ с ленточными треугольными матрицами45
	СЛАУ с блочной трехдиагональной не треугольной матрицей47
3.6.	СЛАУ с ленточной матрицей с преобладанием по одной
2.5	из диагоналей
3.7.	Параллельное вычисление дробнолинейных рекуррентных последовательностей
3.8.	Разложения трехдиагональных матриц в произведение
	двухдиагональных
3.9.	Оценки погрешностей решения СЛАУ с двухдиагональной
	матрицей

4. Распараллеливание рекуррентных циклов	64
4.1. Рекуррентно вычисляемые переменные и рекуррентные циклы	64
4.2. Рекуррентно замкнутое множество отображений	66
4.3. Рекуррентные циклы с несколькими использованиями	
рекуррентно вычисляемой переменной	
4.4. О циклах с нелинейной рекуррентной зависимостью	72
4.5. Распараллеливание циклов с рекуррентной зависимостью на общей памяти	75
4.6. Векторизация рекуррентных циклов	82
4.7. Совместное применение распараллеливания и векторизации циклов с линейной рекуррентной зависимостью	85
5. Алгоритмы итерационного типа и их ускорение	92
5.1. Итерационные алгоритмы решения СЛАУ	
с блочно-ленточными матрицами	92
5.2. Умножение и итерационное умножение блочно-ленточной матрицы на вектор	97
5.3. О сводимости программ, аффинно вычисляющих данные, к задачам линейной алгебры	99
5.4. Операторы сдвига, операторы умножения на функцию и соответствующие им матрицы	107
5.5. Операторы сдвига	
5.6. Действия операторов сдвига на массивы и примеры соответствующих этим действиям матриц	
5.7. О восстановлении алгоритма типа Гаусса-Зейделя по СЛАУ с блочно-ленточной матрицей	
6. Параллельные алгоритмы для вычислительных систем	
с распределенной памятью	122
6.1. Блочно-аффинные размещения массивов в распределенной памяти	
6.2. Межпроцессорные пересылки данных	
6.3. Оптимальное количество процессорных элементов	120
при параллельном вычислении массивов данных рекуррентным программным циклом	л 126
6.4. Изменение ускорения многопроцессорной вычислительной	
системы при повышении быстродействия процессоров	128
Заключение	130
Литература	131
T / T	

Ï