• • •

Н. В. Будылдина, Д. С. Трибунский, В. П. Шувалов

Оптимизация сетей с многопротокольной коммутацией по меткам

Москва Горячая линия – Телеком 2010 ББК 32.88 Б90

Рецензенты: доктор техн. наук, профессор Π . Γ . Доросинский; доктор техн. наук, профессор \mathcal{B} . \mathcal{A} . Π анченко

Будылдина Н. В., Трибунский Д. С., Шувалов В. П.

Б90 Оптимизация сетей с многопротокольной коммутацией по меткам. — М.: Горячая линия—Телеком, 2010. — 144 с.: ил. ISBN 978-5-9912-0124-7.

В монографии рассмотрены основные вопросы многопротокольной коммутации по меткам, преимущества, проблемы распределения трафика и безопасности в сетях MPLS, переход от MPLS к GMPLS, особенности GMPLS. Особое место в монографии уделено методам оптимизации трафика в сетях IP/MPLS с дифференцированным обслуживанием и методам распределения многопродуктовых потоков, а также локализации сбоев, резервированию и восстановлению для обеспечения живучести в сетях GMPLS. Представлен алгоритм оптимизации сетей на основе множителей Лагранжа и модель для определения показателей надежности в сетях GMPLS с защитной коммутацией (1+1) в условиях недостоверного комбинированного контроля.

Для научных работников, инженеров и разработчиков аппаратуры связи, студентов старших курсов радиотехнических факультетов вузов, аспирантов.

ББК 32.88

Адрес издательства в Интернет WWW.TECHBOOK.RU

Научное издание Будылдина Надежда Вениаминовна Трибунский Дмитрий Сергеевич Шувалов Вячеслав Петрович

Оптимизация сетей с многопротокольной коммутацией по меткам

Монография

Редактор Ю. Н. Чернышов Компьютерная верстка Ю. Н. Чернышова Обложка художника В. Г. Ситникова

Подписано в печать 05.11.2009. Печать офсетная. Формат $60\times88/16$. Уч. изд. л. 9,5. Тираж 1000 экз.

ISBN 978-5-9912-0124-7

- © Н. В. Будылдина, Д. С. Трибунский, В. П. Шувалов, 2010
- © Оформление издательства «Горячая линия—Телеком», 2010

Ä

Введение

Технология многопротокольной коммутации по меткам (MultiProtocol Label Switching, MPLS) является ведущей технологией, способной стать фундаментом для инфраструктуры мультисервисных сетей следующего поколения (NGN), в рамках которых станет возможна передача любого трафика через единую телекоммуникационную инфраструктуру. MPLS сочетает в себе гибкость дейтаграммного IP и виртуальных каналов MPLS с поддержкой трафик-инжиниринга, что открывает принципиально новые возможности для использования протокола IP в современных сетях, которые ранее были технически не осуществимы.

Особенностями MPLS-TE являются:

- высокая масштабируемость;
- поддержка QoS;
- универсальность по отношению к протоколам сетевого уровня;
- значительное упрощение процедур маршрутизации;
- универсальность по отношению к транспортным технологиям (ATM, Ethernet, POS и т.п.).

Применение технологии MPLS позволяет перейти на новый уровень обслуживания и организовать предоставление услуг более высокого качества. Особенно перспективным является использование этой технологии для создания виртуальных частных сетей (VPN) и перехода к мультисервисным сетям на основе IP.

Основным подходом в маршрутизации в сетях с коммутацией пакетов вот уже долгое время является выбор маршрута на основе топологии сети без учета информации о текущей загрузке. Для каждой пары «адрес источника — адрес назначения» такие протоколы выбирают единственный маршрут, не принимая во внимание информационные потоки, протекающие через сеть. В результате все потоки между парами конечных узлов идут по кратчайшему маршруту (в соответствии с некоторой метрикой). Выбранный маршрут может быть более рациональным, если, например, в расчет принимается номинальная пропускная способность канала связи или вносимые ими задержки, либо менее рациональным, если учитывается только количество промежуточных маршрутизаторов между исходным и конечным узлами.

Такой подход приводит к тому, что даже если кратчайший путь перегружен, пакеты все равно посылаются по этому пути. Налицо явная ущербность методов распределения ресурсов сети — одни ресурсы работают с перегрузкой, а другие не используют вовсе. Традиционные методы борьбы с перегрузками эту проблему решить не могут, нужны качественно иные механизмы.

С этой целью на сетях связи осуществляется внедрение новых сетевых технологий, например MPLS, которая обеспечивает гарантированную среднюю пропускную способность в соответствии с принципами инжиниринга трафика. Наряду с этим, необходимо предусмотреть, чтобы сети были спроектированы с учетом необходимых методов оптимизации, которые позволят провайдерам максимально эффективно использовать имеющуюся инфраструктуру.

Поэтому для более эффективного использования сетевых ресурсов важными являются задачи оптимизации выбора алгоритмов маршрутизации, чтобы обеспечить производительность сети и сбалансировать нагрузку в случае изменения трафика, без необходимости изменения структуры сети и повышения емкости каналов.

Поставленная задача оптимизации обычно решается с учетом ограничений и относится к так называемым задачам NP-complit, т.е. задачам, решение которых требует больших временных затрат*. Некоторые пути уменьшения времени вычислений представлены в первых пяти главах. В частности, дана содержательная постановка задачи необходимости построения сетей с использованием технологии MPLS, ее преимущества и дано сравнение с другими технологиями. Рассмотрены вопросы управления трафиком и проблемы оптимизации трафика, а также дан обзор методов оптимизации трафика в сетях IP/MPLS.

Управление потоком передаваемой информации позволяет направлять потоки данных не по кратчайшему пути, вычисленному с помощью традиционного протокола маршрутизации, а через менее загруженные узлы и каналы связи. При правильном моделировании потока и правильном выборе методов оптимизации процессов нагрузка на все физические каналы связи, маршрутизаторы и коммутаторы должна быть сбалансирована таким образом, чтобы ни один из этих компонентов не был недогружен или перегружен. В результате сеть будет работать более эффективно, стабильно и предсказуемо.

В первой главе рассматриваются особенности построения сети с MPLS, отмечены ее достоинства и недостатки, во второй главе обсуждаются способы управления трафиком в сетях MPLS и представлены пути совершенствования технологии MPLS, формирование трафика и обеспечение качества услуг. В третьей главе представлен обзор методов оптимизации трафика в IP/MPLS-сетях.

В четвертой главе рассмотрены методы распределения многопродуктовых потоков и существующие подходы к решению задачи определения оптимального дизайна путей с коммутацией по меткам (Label

^{*} Точнее, к недетерминированным полиномиальным задачам (nondeterministic polynomial time problem, NP). Это задачи, которые можно решить на машине Тьюринга за время, полиномиально зависящее от числа переменных. К таким задачам относятся, например, поиск пути на графе или классическая задача о комивояжере. — Прим. peq.

Switched Path, LSP), а также предложен эвристический алгоритм пропорционального распределения потоков, который позволяет получить квазиоптимальный дизайн LSP. Из существующих методов решения задачи оптимизации рассмотрены метод минимального разреза и метод линейного программирования.

Точное решение задач оптимизации можно получить с помощью линейного программирования, однако сложность вычислений при линейном программировании быстро возрастает с увеличением числа узлов в сети и для больших сетей является критической, что приводит к необходимости использования эвристических методов.

В пятой главе рассматриваются вопросы выбора оптимальных путей LSP с дифференциальным обслуживанием трафика при наличии нескольких ограничений. Решение поставленной задачи предлагается осуществить путем использования метода неопределенных множителей Лагранжа. Задача разбита на две части. В первой решается вопрос, связанный с необходимостью перенаправления потоков при выходе из строя ранее выбранного пути. Это приводит к увеличению нагрузки на «резервные» пути и, следовательно, к необходимости увеличения пропускной способности «резервных» путей на величину определенную так называемым коэффициентом отказоустойчивости. Во второй части с учетом результатов, полученных в первой, решается задача выбора квазиоптимальных путей.

Во последних двух главах рассмотрены вопросы обеспечения высоких показателей готовности. Известно, что коэффициент готовности зависит от времени наработки на отказ и времени восстановления. В свою очередь время восстановления зависит от момента обнаружения отказа, его локализации и времени, за который произойдет устранение отказа.

В главе 6 рассмотрены как общие подходы к локализации отказов, так и частные, среди которых метод наложенных сетей и метод локализации отказов путем использования тест-станций. В качестве примера реальной системы мониторинга рассмотрена система Nagios.

Глава 7 содержит материал, посвященный общим вопросам резервирования и восстановления. Рассмотрены методы защиты звена, пути, сегмента. Приведены рекомендации по использованию методов защиты. В качестве одной из мер по обеспечению QoS представлен метод на основе использования приоритетов. Большой раздел посвящен защите и восстановлению в сетях GMPLS (раздел 7.5). Следует заметить, что вопросам защиты и восстановления, помимо упомянутых выше, посвящены как монографии (например, [138]), так и множество статей в журналах [139–152 и др.]. Авторы не ставили перед собой задачу дать полный обзор литературы по данной тематике, а лишь пытались обратить внимание читателя на эту проблему.

Монография может быть использована при развертывании опытной зоны или пуско-наладочных испытаний нового сегмента, что позволяет выяснить все потенциально возможные «узкие места», минимальный

Ä

разрез в сети, которые могут возникнуть в сети через 1–2 года после начала эксплуатации. При эксплуатации, в случаях внедрения новых услуг, изменения плана маршрутизации и т.п. любые изменения в структуре трафика могут привести к негативным последствиям на сети. Используя разные классы обслуживания и измеряя коэффициенты отказоустойчивости связи, можно посмотреть реакцию сети на изменение структуры трафика или увеличения объема передаваемой информации в сети, а также на возникновение неисправности трактов.

Полученные результаты, с одной стороны, представляют научный интерес, с другой стороны, могут быть использованы специалистами при составлении проекта модернизации мультисервисной сети связи к внедрению на сетях связи. Работа не претендует на детальный охват всех вопросов оптимизации телекоммутационных сетей. Однако авторы надеются, что методики, представленные в ней, будут полезны широкому кругу читателей.

При подготовке рукописи использован ряд первоисточников. В основном это англоязычные статьи и материалы IEEE. В поиске работ по тематике представленного в монографии материала и переводе ряда статей принимали участие магистранты и аспиранты СибГУТИ О. Артемьева, А. Бахарев, А. Бритова, которым авторы выражают искреннюю благодарность.

Оглавление

D	оведение
Глава 1.	. Многопротокольная коммутация по меткам
	Определение основных целей и задач исследования. Общие онятия
	Іреимущества MPLS 12
1.3. П	Іроблемы распределения трафика и безопасности в сетях ИPLS
1	Обобщенная многопротокольная коммутация по меткам .4.1. Переход от MPLS к GMPLS
Глава 2.	. Управление трафиком и обеспечение качества услуг
	MPLS
2.1. ⊄	Рормирование трафика
	· · · · · · · · · · · · · · · · · · ·
	Обеспечение QoS (качества услуг)
	. Методы оптимизации трафика в IP/MPLS сетях
	. Методы распределения многопродуктовых потоков
	Модель для оптимизации
	цели оптимизации
	Летоды оптимизации
	ринцип максимального потока (минимального разреза)
	Іинейное программирование
	вристический метод определения оптимального дизайна.
	равнение алгоритмов поиска оптимального дизайна
	. Оптимизация сетей IP/MPLS с дифференциальным
	иванием
· .	Рормулировка задачи оптимизации
5 5	5.1.1. Ограничение по резервированию пропускной способности 5.1.2. Оценка необходимости увеличения пропускной способности LSP с учетом возможных отказов
	Вристический алгоритм оптимизации
	5.2.1. Подзадача на основе использования метода неопределенных множителей Лагранжа
5	5.2.2. Алгоритм оптимизации на основе множителей Лагранжа
5.3. N	Летод повторной оптимизации
54 M	Лолель сети

144

Ä

Глава	6. Обнаружение и локализация сбоев	84
6.1.	Классификация сбоев	84
6.2.	Реакция системы и требования к системам локализации сбо-	
	ев	86
6.3.	Методы локализации сбоев	88
	6.3.1. Методы, относящиеся к области искусственного интеллекта	88
	6.3.2. Техника пересечения моделей	91
	6.3.3. Методы, ориентированные на использование теории графов	92
	6.3.4. Метод наложенных сетей	97
6.4.	Мониторинг сети. Оптимальная расстановка зондирующих	100
	станций	100
6.5.	Система мониторинга сети	104
Глава	7. Резервирование и восстановление	111
7.1.	Пути обеспечения живучести сетей связи	112
7.2.	Классические модели защиты	114
7.3.	Использование механизма приоритетов для схем с разделя-	
	емой защитой	115
7.4.	Защита и восстановление в сетях GMPLS	118
7.5.	Разработка модели для определения показателей надежнос-	
	ти в сетях GMPLS с защитной коммутацией $(1+1)$ в условиях	
	недостоверного комбинированного контроля	130
	Краткий глоссарий	133
	Литература	135