ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Брянский государственный технический университет

Л.А. Потапов

ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

Утверждено редакционно-издательским советом университета в качестве учебного пособия

> Брянск ИЗДАТЕЛЬСТВО БГТУ 2009

ПРЕДИСЛОВИЕ

Учебное пособие предназначено для изучения теоретической части дисциплины «Электродинамика и распространение радиоволн» и соответствует требованиям Государственного образовательного стандарта специальности 210304 «Радиоэлектронные системы».

В учебном пособии рассмотрены основные уравнения электродинамики, особенности возбуждения и распространения радиоволн, модели и методы расчета радиотрасс.

Для лучшего усвоения понятий и терминов, характеризующих электромагнитное поле, общие сведения о макроскопической электродинамике, электростатическом, магнитном и электрическом поле постоянных токов вынесены в отдельные главы, приведены примеры, в конце каждой главы даны вопросы для самопроверки.

Для переменного электромагнитного поля получены уравнения Максвелла и Гельмгольца в комплексной форме, рассмотрены особенности распространения, отражения и преломления плоских волн, образования E-, H-, T-волн в направляющих системах, возбуждения и распространения радиоволн. При этом более подробно рассмотрено распространение радиоволн в свободном пространстве, вблизи поверхности Земли, тропосфере и ионосфере.

В учебном пособии больше внимания уделено физической интерпретации явлений электромагнетизма. С целью уменьшения объема учебного пособия исключены подробные выводы отдельных уравнений. Эти выводы студент при необходимости может найти в литературе, перечень которой приведен в конце пособия.

В приложении приведены уравнения векторного анализа в сферической и цилиндрической системе координат и рассмотрены особенности электромагнитных волн в анизотропных средах. Эта тема рекомендуется студентам для самостоятельного изучения.

Учебное пособие предназначено для студентов очной формы обучения специальности 210304 «Радиоэлектронные системы», а также может быть использовано студентами других электротехнических специальностей.

ОГЛАВЛЕНИЕ

ГЛАВА1. ОБЩИЕ СВЕДЕНИЯ О МАКРОСКОПИЧЕСКОЙ	
ЭЛЕКТРОДИНАМИКЕ	4
1.1. Векторы электромагнитного поля	4
1.2. Уравнения Максвелла	8
1.3. Энергия электромагнитного поля	11
Вопросы для самопроверки	14
ГЛАВА 2. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ	15
2.1.Основные определения	15
2.2. Граничные условия	18
2.3. Теорема единственности решения	22
2.4. Графический метод построения картины	
плоскопараллельного поля	22
2.5. Метод зеркальных изображений	24
2.6. Определение потенциала по заданному распределению	
заряда. Принцип суперпозиции	25
2.7. Потенциал и напряженность электрического поля	
диполя	27
2.8. Энергия электростатического поля	28
Вопросы для самопроверки	31
ГЛАВА 3. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ	
ПОСТОЯННЫХ ТОКОВ.	
3.1 Электрическое поле постоянных токов	32
3.2. Аналогия электрического поля в проводящей среде	
с электростатическим полем.	
3.3. Магнитное поле постоянных токов	
3.4. Векторный потенциал магнитного поля	38
3.5. Граничные условия на поверхности раздела двух сред	
с различными магнитными проницаемостями	
3.6. Поле прямого провода (прямолинейного тока)	
3.7. Графический метод построения картины поля	
3.8. Магнитное экранирование	
3.9. Магнитная энергия постоянного тока	
Вопросы для самопроверки	
ГЛАВА 4. ПЕРЕМЕННОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ	
4.1. Уравнения Максвелла в комплексной форме	
4.2. Волновые уравнения	51

4.3. Лемма Лоренца. Теорема (принцип) взаимности	53
4.4. Принцип перестановочной двойственности	58
4.5. Основные методы решения задач электродинамики	
4.5.1 Формулировка задач электродинамики	
4.5.2 Точные методы решения	
4.5.3 Приближенные методы решения	
Вопросы для самопроверки	64
ГЛАВА 5. РАСПРОСТРАНЕНИЕ ПЛОСКОЙ ВОЛНЫ	65
5.1. Плоские волны в вакууме	
5.2. Плоские волны в проводящей среде	69
5.3. Плоские электромагнитные волны в изотропных	
поглощающих средах	73
5.4. Экранирование и высокочастотный нагрев	
металлических деталей и несовершенных диэлектриков	77
Вопросы для самопроверки	78
ГЛАВА 6. ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ ПЛОСКИХ	
ЭЛЕКТРОМАГНИТНЫХ ВОЛН	79
6.1. Переход плоской линейно поляризованной волны из	
одной среды в другую при нормальном падении	79
6.2. Наклонное падение плоской линейно поляризованной	
волны на границу раздела двух диэлектриков	
6.3. Полное преломление (отсутствие отраженной волны)	
и полное отражение (отсутствие преломленной волны)	
6.4. Дифракция электромагнитных волн	
6.5. Устранение отражения электромагнитных волн	
Вопросы для самопроверки	
ГЛАВА 7. НАПРАВЛЯЮЩИЕ СИСТЕМЫ	
7. 1 Волноводы	90
7.2. Линии передачи с волнами типа T	97
7.3. Аналогия между волноводом и линией	
с распределенными параметрами	103
7.4. Замедляющие структуры	
7.5. Объемные резонаторы.	
Вопросы для самопроверки	
ГЛАВА 8. ВОЗБУЖДЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН	
8.1 Уравнения Максвелла для области, содержащей источни	
Неоднородные волновые уравнения	
8.2 Электродинамические потенциалы	116

• •

8.3 Запаздывающие электродинамические потенциалы	117
8.4 Элементарный электрический излучатель	
8.5 Исследование поля электрического диполя	
8.6 Элементарный магнитный излучатель	
8.7 Элемент Гюйгенса.	
8.8. Способы возбуждения полей в волноводах	
8.9. Интерференция и дифракция электромагнитных волн	
Вопросы для самопроверки	
ГЛАВА 9. РАСПРОСТРАНЕНИЕ РАДИОВОЛН	
9.1. Краткая характеристика радиотрасс	
9.2. Излучение электромагнитных волн в свободное	
пространство	138
9.3. Распространение электромагнитных волн вблизи	
поверхности Земли	148
9.3.1. Поле излучателя, поднятого над плоской	
поверхностью (первая модель)	151
9.3.2. Поле излучателя, поднятого над сферической	
поверхностью (вторая модель)	154
9.3.3. Поле вертикального электрического вибратора,	
расположенного вблизи земной поверхности	155
9.3.4. Поле в зоне тени (третья модель)	
9.4. Тропосферные волны	
9.4.1. Диэлектрическая проницаемость и показатель	
преломления тропосферы	160
9.4.2. Рефракция электромагнитного поля в	
тропосфере	163
9.4.3. Дальнее тропосферное распространение радиово	
9.4.4. Затухание радиоволн в тропосфере	
9.5. Ионосферная волна	
9.5.1. Строение ионосферы	
9.5.2. Электрические параметры ионосферы	
9.5.3. Условия распространения волн в ионосфере	
9.5.4. Траектории радиоволн в ионосфере без учета	
влияния магнитного поля Земли	175
9.5.5. Влияние магнитного поля Земли на	
распространение радиоволн в ионосфере	178
9.6. Особенности распространения радиоволн различных	
диапазонов.	180

• •

200

9.6.1. Распространения волн ОВЧ-ГВЧ-диапазонов	179
9.6.2. Особенности распространения волн ВЧ-диапазо	на 181
9.6.3. Особенности распространения волн СЧ-, НЧ- и	
ОНЧ-диапазонов	183
9.6.4. Помехи радиоприему. Уравнение связи	184
9.6.5. Понятие об электромагнитной совместимости	
радиоэлектронных средств	187
Вопросы для самопроверки	189
СПИСОК ИСПОЛЬЗОВАННОЙ И РЕКОМЕНДУЕМОЙ	
ЛИТЕРАТУРЫ	190
при помения	101

• • •