УДК 532.59 ББК 22.253.3 Л 185

Лайтхилл Дж.

Математическая биогидродинамика. — М.–Ижевск: Институт компьютерных исследований, 2014.-408 с.

В основу книги положены материалы лекций по математической биогидродинамике, прочитанных автором на конференции Национального научного фонда (16–29 июля 1973 года) в Политехническом институте Ренсселлера (Трой, Нью-Йорк). Значительная часть материала была опубликована в таких ведущих журналах, как Annual review of Fluid Mechanics и Journal of Fluid Mechanics.

В книге представлены методы и стиль исследований автора, который внес значительный вклад в развитие этого направления в динамике в XX веке: проанализированы различные механизмы достижения высоких скоростей и маневренности (использование энергии волн, снижение сопротивления жидкости и оптимальные режимы движения), а также вопросы внутренней биогидродинамики, связанные с распространением волновых возмущений, ролью вихревых процессов и эластичности стенок сосудов.

Книга будет полезна специалистам в области гидродинамики и биомеханики, студентам соответствующих специальностей, а также всем, кто интересуется механикой природных явлений. Особо следует отметить, что, по мнению автора, данная книга чрезвычайно полезна для биологов и медиков.

ISBN 978-5-4344-0161-6

ББК 22.253.3

Ä

Mathematical Biofluiddynamics

- © Society for Industrial and Applied Mathematics, 1975 Published by Izhevsk Institute of Computer Science with permission
- Ижевский институт компьютерных исследований, перевод на русский язык, 2014

http://shop.rcd.ru http://ics.org.ru

• • •

Оглавление

От редактора	. ix
Выражение признательности	. xi
Глава 1. Введение в биогидродинамику	. 1
1. Общие положения	
2. Внешняя биогидродинамика	. 5
3. Внутренняя биогидродинамика	. 7
Часть I. Внешняя биогидродинамика	13
ГЛАВА 2. Гидромеханика самодвижения водных животных. Обзо	
1. Область исследования	
2. Самодвижение беспозвоночных в воде	
3. Введение в кинематику плавания рыб	
4. Плавание угреобразных	. 26
5. Плавание скомброидных	
6. Лабораторные исследования скомброидного типа плавания.	. 34
7. Скомброидный тип движения рыб с хвостом в виде полумеся	ца 37
8. Двумерный анализ динамики серповидного хвоста	. 40
9. Более детальное изучение движения быстрых перкоморфных	
рыб	. 43
10. Плавучесть рыб	. 46
11. Передвижение «панцирных» рыб	. 51
12. Использование конечностей для плавания: земноводные и чле	e-
нистоногие	. 52
13. Перемещение в воде пресмыкающихся	. 54
14. Передвижение в воде млекопитающих	. 58
15. Заключение	. 60
ГЛАВА 3. Математические аспекты передвижения водных живо	
ных при низких числах Рейнольдса	
1 Ввеление	63

• • •

Ä

Оглавление

۷.	уравнения движения жидкости и их фундаментальные син-	
	гулярные решения	
3.	Сингулярные решения на отрезке 6	9
4.	Теория продвижения с помощью жгутика, основанная на си-	
	ле сопротивления	-
5.	Плавание с минимальной потерей энергии	2
6.	Теория тонкого тела	6
	4. Высокоэффективные с гидродинамической точки зрения	
ме	ханизмы плавания животных	
1.	Введение	
2.	Угревидный способ передвижения	2
3.	Вихревые пелены за плавниками	3
4.	Механика скомброидного типа движения	2
5.	Двумерная теория динамики хвоста в виде полумесяца 13	4
Глава	5. Приложение теории тонкого тела к продвижению рыб	
пр	и волнообразном поперечном движении тела с большой ам-	
пл	итудой	9
1.	Введение	9
2.	Расчет реактивной силы	4
3.	Обсуждение баланса силы тяги и силы сопротивления на ма-	
	териале наблюдений	1
Глава	6. Передвижение водных животных. Обзор новейших тео-	
pe	гических исследований	1
1.	Введение	1
2.	Разделы гидродинамики, применяемые для изучения пере-	
	движения животных в воде	4
3.	Гидродинамика ресничных организмов	5
4.	Теория вытянутого тела при широкоамплитудных волнооб-	
	разных поперечных движениях	2
5.	Вихревые следы	0
Глава	7. Некоторые современные исследования перемещения вод-	
ны	х животных	5
1.	Движение при малых числах Рейнольдса 20	5
2.	Движение при больших числах Рейнольдса	0

• • •

•	•	•	Ä

	Оглавление	vii
Гпава	8. Аэродинамика полета животных	219
1.7ABA	Завоевание воздуха	
2.	Непрерывно поддерживаемый направленный полет	. 21)
2.	насекомых	. 225
3.	Полет птиц	
4.	Трепещущий полет	
Глава	9. Механизм Вейс-Фога образования подъемной силы	255
1.	Введение	. 256
2.	Двумерная постановка задачи о движении крыльев насеко-	
	мого в невязком потоке	. 259
3.	Двумерная постановка задачи о движении крыльев насеко-	
	мого с учетом вязкости	
4.	Заключение	. 272
Часті	ь II. Внутренняя биогидродинамика	279
Глава	10. Физиологическая гидродинамика: общий обзор	281
1.	Введение	
2.	Установившиеся вторичные потоки	
3.	Входные зоны	
4.	Атероматозное поражение артерий	. 287
5.	Распределение деформации сдвига в разветвленной сосуди-	
	стой системе	. 288
6.	Сопротивление в ветвящихся системах	
7.	Бронхиальное сопротивление	
8.	Распределение скорости в пульсирующем потоке	
9.	Распространение пульсаций	
10.	Турбулентность в системе кровообращения	
11.	Мочевыводящие пути	. 295
	11. Воздушные потоки в дыхательной системе	
1.	Введение	
2.	Движение воздушных потоков в бронхах человека	
3.	Дыхание птиц	. 306
Глава	12. Распространение пульсаций в кровеносной системе .	
1.	Введение	
2.	Распределение напряжений в стенках сосуда	. 320

Оглавление

7

	٠	٠	٠
X 7	1	1	1
v	1	1	1

Оглавление

3.	Прохождение волн в местах ветвления артерий 325
4.	Взаимодействие разветвлений в сосудистой системе 332
5.	Изменение амплитуды волны в сосуде
6.	Сравнение с экспериментальными данными
Глава	13. Кровоток и заболевание артерий
1.	Турбулентность в потоке крови
2.	Течение в области постстенотического расширения сосуда 358
3.	Аневризмы сосудов головного мозга
4.	Развитие атеросклероза, обусловленное межклеточным отло-
	жением жиров
5.	Внутриклеточное накопление липидов
Глава	14. Микроциркуляция
1.	Введение
2.	Вазомоторный контроль периферической перфузии 379
3.	Легочная перфузия и вентиляция
4.	Концентрация эритроцитов вдоль оси капилляров 384
5.	Слой смазки в очень узких капиллярах

• • •